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We consider the one-parameter family of mappings f,(x)=4ax(1 - x), a,x
€ [0, 1] and define an infinite countable set of parameter values a for which the
solutions show observable chaos. Their properties are investigated by means of
correlation functions and spectra, which can be interpreted and approximated
by separating periodic and chaotic components in the solutions and introducing
two simple assumptions on the statistics of the chaotic component.
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1. INTRODUCTION

In recent years there has been considerable progress in the understanding
of the dynamic properties of discrete nonlinear one-dimensional dynamic
systems(!~®

X, e1(a) = f.(x,(a)), ael, x, €1, 7=0,1,2,...
with f, : I <, I,J: intervals of the real axis

(M

Concerning applications'®?® to experimentally realizable systems the sta-
ble stationary dynamics generated by f, is of particular interest. The
stationary dynamics is characterized by the asymptotic behavior of typical
solutions {x.(a)}>_, of (1) which is either periodic or chaotic. A solution is
typical if the set of initial points x, giving rise to solutions with the same
asymptotic behavior is not countable. By the stability of the dynamics we
mean that the solutions considered do not change their type of behavior
under infinitesimal perturbations. This requirement is essential for the
comparability with experimental results, which are usually obtained in the
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presence of some background noise. In the case of periodic solutions the
problem of stability is easily resoived by a linear stability analysis, see, e.g.,
Ref. 20. In the chaotic case, however, one is led to the important question
of observability.? Many numerical investigations corroborate that the
Li~Yorke criterion®® only states the formal existence of chaos but not its
observability. Oono and Takahashi®) investigated this point and proposed
a criterion for the observability of chaos.

In this paper we consider as an example for (1) the logistic parabola

fa(x) = dax(1 — x), a,x €[0,1] (2)

which has the advantage of combining the capacity of a multitude of
generic features with a comparatively simple mathematical form.

After reviewing some results needed later (Section 2), we describe how
one can obtain for each stable periodic solution a corresponding state of
periodic chaos (Section 3). This procedure can also be applied to dynamical
laws other than (2). In Sections 4 and 5 we discuss the correlation functions
and spectra in these states. While the correlations are very well suited to
recognize chaotic states as closely related, e.g., a cycle and its subharmonic,
the spectra render a clear-cut discrimination even between those closely
related states. An approximation method for the spectra relying on a
decomposition of the dynamics into a periodic and a psendostochastic
component is proposed in Section 6.

2. STABLE DYNAMICS

For a €[0,a("), a{V =0.892486417 ... the typical solutions of (2)
show asymptotically periodic behavior with period p = 2" n(a)=0,1,
2, ... . The solutions converge to limit sets A(a) = {)Ej(a)}j-’;o1 with £,
=fa()€j) forj=0,1,2,...,p~2and X, =fa(fp_,); Xola) > )?j(a),j = 1,2,
3,...,p— L

Fofa € (a'V, 1] Hoppensteadt and Hyman® demonstrated the exis-
tence of formal chaos by applying the Li-Yorke criterion to iterated maps
£ =f, o fn=D fO(xy= x. a{V thus plays the role of a critical point
separating an “ordered phase” (a < a'V), where periodic solutions with
periods p = 2"? prevail, from a “disordered” one (a > a{") characterized
by formal chaos.***> The analogy to a continuous (second-order) phase
transition can even be carried further. The bifurcation points af’ < a(®,
n=1,2,3,... where the period of stable solutions jumps from p =2""' to
p = 2" obey asymptotically an exponential law(?*?

(1)~ (1) __ Do —
al ;};ac) athy " 3)
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Feigenbaum>® (who considered the points of maximum cycle stability)
obtained by high precision computations § = 4.669201609102 ... . The
empirical observation of exponential convergence was put on a sound
mathematical basis by proofs of Collet et a/. and Lanford II1.*7

For a = a!" the limit set A(a/") is a Cantor set.(?3**% According to
Ref. 13 it can be described as the limit obtained by iterated fragmentation
into subintervals with scaling factors —1/a and 1/a” where a=
2.502907875 ... .%¥ In our own numerical computations (accuracy: ten
decimal places) we have found « to vary within [2.356,2.577].

In the interval (a{", 1] further stable periodic solutions (cycles) occur
showing a behavior analogous to that observed in [0,a{?): At some value
a§™ a primary cycle of period m comes into existence by “tangent-type”
bifurcation®® (called “saddle node” in Ref. 30). If a is increased, the
primary cycle finally loses stability and subharmonics of period p = m - 2",

n=1,2,3,... consecutively become stable at parameter values a{™. They
are generated by “slope-type” bifurcation®® (called “flip” in Ref. 30).
Again the series {a{™ }%_,, m = 3,4,5, ... converge to critical values a{™
asymptotically obeying exponential laws
my N~/ m) _ (m)gs —n
a"™ == al™ — a™p (4)

with the same 8 as in (3). For m > 5 there is more than one primary cycle
for each m. These cycles differ in the ordering of periodic points.®" An
explicit formula for the multiplicity of cycles as function of m is given in
Ref. 32. To keep track of different cycles with the same period we introduce
a new index r > 1. Thereby we adopt the convention r, < r, if a{™"
< af™,

Defining J ™7 = [a{™", a{™") we have J ") JUmr) = @G if (m,r,)
# (m,,r,) as a consequence of a theorem of Fatou®® and Julia®* stating
that two different cycles cannot be stable simultaneously.

The theorem of Sarkovskii®**® gives an order relation between differ-
ent J ¢ which corresponds to the order relation of Metropolis, Stein, and
Stein®) (MSS), later amended by Collet and Eckmann.>® They devel-
oped the following procedure to characterize the structure of stable cycles:

For each stable cycle there is a value of @ for which it is superstable,
i.e., the point x* = 1/2 with f,(x = x*) = 0 is element of the limit set A(a).
With )?p_,(a) = x* the cycle structure is characterized by describing the
position of each £,(a) relative to X, ,(a) for j=0,1,2,...,p—2 by
symbols R and L, where R denotes the case )€j(a) > x* and L the case
%;(a) < x*. Thus each cycle is labeled by a sequence of Rs and Ls.
Although the periodic points %;(a) shift as functions of a, the ordering
described by these MSS sequences stays the same as long as the cycle in
question exists.
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Interpreting R and L as branches of the inverse map f{ ™V
R,(x)=[1+(1—x/a)/*]/2  right branch
La(x)=[1—(1 —x/a)'/z]/2 left branch

these sequences lead to a straightforward numerical procedure to determine
the parameter values 4™" of maximum cycle stability. Let 9 denote a
given MSS sequence RL . . . . Then the corresponding 4™ is a solution of
4 = P4(1/2) where P, denotes the function R,o L, o - - -

Another useful means for the description of cycle structures is the
following composition law®*? ;

If $ and 2 = 0400, - - 0, 0,= R, L are two MSS sequences, 2 is
the sequence P 7, &7, - -+ P7,_ 97,9 with 7, = R,L and

J

=g, if % has an even number of R characters
I o; otherwise

Thus, for example, the bifurcation of a cycle ¥ into a series of sub-
harmonics is described by ?«R*", n=1,2,3,... (Note: R>= RRR, but
R*3 = R«R*R).

3. STATES OF PERIODIC CHAOS

Starting from a cycle of period p, which becomes stable at a = a{™",
one can find a parameter value where chaos is observable by proceeding as
follows:

(i) One adjusts a to the value 4" where the cycle in question is
superstable (Fig. 1a).

fa Uyl 4l
| I L
: i P i
s ] . s,=
j i I v !
T S T ) oW e
a b ¢

Fig. 1. Construction of states of periodic chaos. (a) Superstable cycle of f;; (b) periodic
points show up as stable fixed points in the p-fold iterated map at the same parameter value d;
(c) fi-like situation in each box after a slight increase of the parameter to a value 4.
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(i) Each periodic point %;(a) shows up as a stable fixed point of the
iterated map £{” (Fig. 1b). In the neighborhood of each of them there is an
unstable fixed point %(a) coinciding with the stable one for a = a{™”.
Using these neighboring fixed points as corner points one can construct
squares around all stable fixed points in the manner indicated in Fig. 1b.
The)se squares define intervals /{#’(a) which are mapped into themselves by

(p
A2

(i) Increasing a one finally arrives at a = @), where {7’ maps all
IP(a) onto themselves, i.e., on each square the local extremum of f(7)
touches the lower or upper edge (Fig. lc).

Figure 2 shows some examples obtained this way. Some values for
@™ are given in Table I.

In the following we discuss the dynamic properties of such states by
means of correlation functions and spectra. A thorough account on other
aspects of these states is given in Ref. 6 and their invariant densities are
discussed in Refs. 38-42. Within each of the squares, i.e., on intervals

o

a R RriZ e

b R+ RLRZ f
R1Z'R g

ﬂl&m 1

M

Fig. 2. States of periodic chaos. The diagrams show the respective iterated maps fufl’) on the
unit square with chaotic boxes. (a)-(d) Subharmonics of p = 1; in going from a cycle to its
subharmonic each box is replaced by a pair of linked boxes; (e)-(h) primary cycles, boxes are
far apart from each other; (f)-(h) show different period-5 chaotic states.
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Table I. Parameter Values for Some States of Periodic Chaos

MSS m r n agmn
1 1 0 1.000 000 000
R 1 0919643377 - - -
R*? 2 0.898 143046 - - -
R*? 3 0.893701234 - - -
R** 4 0.892 746485 - - -
R**® © 0.892486417 - - -
RL 3 1 0 0.964 200163 - - -
RL*R 1 0.962782093 - - -
RL*R¥? 2 0.962446 111 - - -
RL*R** 0 0.962358420 - - .
RLL 4 1 0 0.990398 880 - - -
RLL*R 1 0.990322998 - - -
RLRR 5 1 0 0936177583 - - -
RLRR*R 1 0.935853583 - - -
RLLR 5 2 0 0.976693038 - - -
RLLR#*R 1 0.976632301 - - -
RLLL 5 3 0 0.997586 178 - - -
RLLL*R 1 0.997581743 - - -
IP(@), j=0,1,2,...,p—1, the map f{” generates a dynamics analo-

gous to that of f, on the unit interval. Therefore observable chaos is
expected in each of these boxes. As Misiurewicz(*? could show, these states
indeed have invariant ergodic measures pu‘” (dx) absolutely continuous
with respect to the Lebesgue measure. Numerical studies®*®**? indicate their
observability.(?14%

An example of a solution of f, for a = d™" is given in Fig. 3b. The
qualitative behavior is easily understood as the superposition of the chaotic
solutions within the squares and the periodic mapping of the squares onto
each other (Fig. 3a). Therefore we called these states “periodically chaotic”
in Ref. 26. Other authors use the term “semiperiodic”*¥ or characterize
these states by the occurrence of “invariant segments”.(”

Obviously there is exactly one @™ for each a{™", i.e., to each stable
cycle there is exactly one state of periodic chaos. Therefore we also use the
RL pattern of the underlying cycle to label the corresponding chaotic state.
Because of this one-to-one relation between stable cycles and states of
periodic chaos the set {G™"} is infinite but countable. General consider-
ations, however, indicate that the set of parameter values leading to
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Al

Fig. 3. Superposition of periodic and pseudostochastic components for a = a§>". (a) Within
each box j=0,1,2 on the diagonal f{* generates a chaotic solution; f; maps the chaotic
boxes onto each other in a cyclic fashion; only those parts of f; contained in the off-diagonal
boxes j = 0, 1,2 become effective; (b) solution of f;; the chaotic behavior within each box is
obvious.

observable chaos has positive Lebesgue measure.®> Up to now no proof of
this is available.

The order relation between different cycles*!™> can likewise be used to
give an ordering of different states of periodic chaos. To this end we
consider first the case a = "V = 1. Let a(®) denote the value of the
parameter where the cycle @ is superstable. Then

ahd = lim a(RLY) ~ (5)

To prove the validity of this equation we interpret R and L as inverse
operators of f, as in Section 2. Since L has only one globally stable fixed
point at zero, LY (1/2)-0 for y > o and R(0) = 1.

In the more general case of a periodic chaos with an underlying cycle
PUmn) = Pmry R*" the corresponding value ™ is given by

Fm.r) — 1 (m,r) Y
a, Yll)noxoa(@n *+RLY) for each (m,r),n (6)

This relation is easily understood by taking into account that in 9 %2 the
first sequence 9 describes the overall structure of the cycle, whereas 2
describes its fine structure.*” The limit y—> oo in *+RL" thus makes the
local extrema of f(# approach the edges of the respective squares while
@) takes care of the coarse cycle structure. A proof of (6) can again be
given by interpreting R and L as inverse maps. Thus by using the order
relation between MSS sequences®™ one arrives at an ordering for the
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a@™". Another conclusion drawn from the order relation between MSS
sequences is

lim a{™"” = lim @™"”  for each (m,r) (7
n—>c0 n—>oo
Both limits are equal because the sequences lim,_ Py« R*" and
lim,_,  lim Pmy R*"x RLY agree for an infinite number of consecutive
symbolis from the start. A full-fledged general proof is given by Collet et

al® The @™, n=0,1,2,... again obey an asymptotic exponential
law (26394

Fim,r) N (mr) 4 m(mr)g —
a’”’n-:oac’”’ +amrgTr for each (m,r) (8)

n

where § is again the same as in (3).

4. CORRELATIONS IN STATES OF PERIODIC CHAOS

A more detailed description of periodic chaos is obtained by use of
correlation functions (c.f.) defined as

c.(d) = (8x(@)dx,(a)) ®
with the fluctuation
ox,(d) = x,(d) — (x(a))
dx(d) = 0x,_o(@) (10)

The average < - - - > may be calculated either as
ensemble average { - - - (x)) —_—fl <o (x)dut? (x)
0

or as
=
time average ( - - - (x,)) = Tlg%o T cee(x)

t=0

since ergodicity is given (Section 3).

For a = d§"" = 1 the cf. can be calculated analytically,***
«M=10 if 70 (0

Numerical results for other values of a are shown in Fig. 4. In all cases the
c.f.’s rapidly converge with increasing 7 to a periodic oscillation. Decom-
posing the complete solution {x (d¢?)}%_, into p subsolutions
(x(@ Py, j=0,1,2,...,p— 1, where the jth subsolution is com-
pletely contained in the jth chaotic box, this asymptotic oscillation is easily
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Fig. 4. Correlation functions for several states of periodic chaos (time average with T =
50,000); aside from a slight change in amplitude c differs from b also in an additional periodic
oscillation of the amplitudes, which, however, is so small that it cannot be discerned in c.

explained as the c.f. of the mean values of subsolutions. Thus, a different
structure of the underlying cycle in general shows up clearly in the
asymptotic behavior of the c.f.’s. Compare for example Figs. 4b,4¢ with
Figs. 4e,4f, both showing c.f’s in states of chaos with p=4 and p =38,
respectively. On the other hand the close structural similarity between a
cycle and its subharmonics leads to similarly looking c.f.’s (Figs. 4a-4c).
The investigation of the dynamic behavior in a single box generated by
the iterated map ﬁ;(f’) reveals another interesting feature. Therefore we
consider the subsolutions {x{”(dP)}*_,. To facilitate a comparison with
the c.f. for a = 1 we normalize all of these solutions to the unit interval by

e G (12)

where [ is the length of 7{”(&) multiplied by +1(—1) if f{”’ has a local
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Fig. 5. Deviation A¢f/ of correlation functions in normalized boxes from “normal” behavior
(time average with 7' = 50,000); one ordinate unit = 0.01.

maximum (minimum) in /7 (&). The box c.f.’s
e d) = (850(a)8%9(d)) (13)

are similar to the “normal” c.f. (11). Since we are interested in the
deviations from (11), we consider the difference A& (&) = ¢(8) — c,(1),
see Fig. 5.

The numerical results may be summarized by the following rule: If the
underlying cycle is primary in the sense of Section 2, the box c.f.’s decay
almost as fast as ¢, (1). If the underlying cycle is 2 subharmonic, the decay
is appreciably slower. In all cases the decay is monotonous.

We pointed out in Ref. 26 that the immediate decay as observed in
(11) is brought about by an intricate balance in the shape of the dynamical
law. The dynamic law f, considered here as well as all iterated maps f{”
are polynomials. Since the first derivative f] has only one zero at x* =1/2,
it is clear from the construction of the 4" that in the case of period-p

”n

chaos the first derivative of f{” has precisely one zero z; of first order in
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each chaotic box j. Denoting the other zeros of f{#)(x), which is a
polynomial of (27~ I)th degree, by z,,2,,1, ..., 25, f3#(x) can be
represented by [[%_¢(x — z;). The deviation of f{” from a parabolic shape

in the box j can be measured by the ratio

p=minls— g/l k=012,...,27 =2 (14)

This is because ;> 1 means f{”(x) is almost linear in box j and therefore
f£P)(x) is almost parabolic:

2P—2
AP (x)= k1=]0 (x —2z) o(x—2z) forxe 1P, r>1

) 152 _ P
fEP(x) ofx?—zx +const  forx € [P,  r>1

Table II contains the values of r; for the box c.f.’s shown in Fig. 5. r;> 1
clearly implies a close to normal behavior of the respective box c.f. whereas
the converse is not true.

Thus the observed slower decay of box c.f’s in the case of subhar-
monic underlying cycles is a probable but not necessary consequence of the
pairing of boxes occurring in this case (Figs. 2a-2d). On the other hand,
boxes are always isolated if the underlying cycle is a primary one (Figs.
2e-2h), which accounts for the close similarity of the box c.f.’s to ¢, (1).

Table Il. Shape Parameter ,
for Subharmonics and

Primary Cycles
Cycle J r
R 0 1.76

1 0.74
R*? 0 1.78
1 1.67
2 0.69
3 0.75
RL 0 9.61
1 272
2 1.59
RLL 0 44.9
1 11.6
2 6.73
3 337
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5. SPECTRA OF PERIODIC CHAOS

In this section we consider the power spectra of periodically chaotic
solutions using the discrete Fourier transformation. To avoid ambiguities in
this formalism we introduce the concept of the “N-truncated” solution as
follows:

If {x,}7_, is a solution of (1), then {x, }7. o with x _, = x, for

1=0,12,...,N-land x , yy=x,5 7=0,1,2,- - - is referred to as
“N-truncated” solution.?
Its c.f.
cn = (8xon0x ) (15)

can be obtained from the c.f. ¢, of the original solution by
C,,’Nz(l—T/N)CT"'(T/N)CNVT, r=0,1,2,...,N (16)

For < N we have ¢ _y = c,. If ¢, decays in a characteristic time 7, and
N >, ¢,y may be looked upon as a good approximation to c,, and N
truncation can be regarded as mere technicality.

We define the Fourier transform of the fluctuations of an “N-
truncated” solution {x, y};_, as

N—1
Xy = S exp(=2mr/N)8x,ps  »=012..,N=1 (I7)
7=0
The inverse transformation is
N—1

SXT,N = 2 eXp(iZWTV/N)X,,’N, T = 0, 1’27 sy N~-1 (18)

p=

Since the fluctuations dx, , are real, the Fourier transform has the property
Xy_on =X, 5 (19)

where the overbar denotes the complex conjugate. Introducing (18) into
(15) we obtain

c'r,N = <6xt,N6xt+-r,N> )

N=1N~1
N = 20 20 exp{i27r[t(u +v)+ w]/N}(X”’NX,,’N )
p=0r=
Since the fluctuations 8x, 5 are stationary, ¢, 5 does not depend on ¢, i.e.,
(X X, n)=0if p+»70 (modN) (20)

2Note that “N-truncated” is just short for “truncated to N elements and then periodically
continued.”
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Therefore

N~1
CT,N = z exp(iZWTV/N)<XN_wa,N >

p=

and because the fluctuations are real, we have

N-1
c,n = 2, exp(i2atr/N)S, » (21
r=0 :
N-1
S,v=+ S exp(—i2mr/N 22
v, N N ~ p( L2y )c'r,N ( )
where
S, v = (IX,n") (23)

is the power spectrum.
Introducing (11) into (22) we obtain for a = 1

S, v(1)=0.125/N (24)

For other @ <1 we have calculated S, ,(4) numerically. Figure 6
shows some examples. Though these S, , (@) vary over about ten orders of
magnitude, round-off errors have no appreciable effect in this range as will
become clear in the discussion of critical spectra below. To avoid spectral
leakage!*? N has always been chosen an integer multiple of the underlying
period p. Because of (19) S, y has the symmetry

SV,N = SN—u,N (25)

Therefore we only need to discuss S, , in the interval 0 < »/N < 1/2.

All spectra contain a continuum part due to the chaotic motion within
the boxes and lines representing the underlying cycle. A cycle of period p
causes lines to appear at »/N=j/p, j=12,...,p— 1. The relative
magnitudes of these lines reflect the intrinsic structure of the cycle. (Com-
pare for example Fig. 6b with Fig. 6e, and Figs. 6f, 6g, and 6h with each
other.) Going from a cycle to its subharmonic adds a fine structure to the
otherwise practically unchanged overall structure of the cycle. Therefore
the already existing lines in the spectrum do hardly change in magnitude
while new lines corresponding to the doubled period of the subharmonic
appear (Figs. 6a—6d).

The small fluctuations on the continuum are due to the finite average
used in the numerical computation. For primary cycles (Figs. 6e—6h) the
continuum has practically no structure, whereas subharmonics have in
most cases a strongly structured continuum (Figs. 6b—-6d) with local ex-
trema at the cycle frequencies j/p. The amplitude of this modulation is the
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Fig. 6. Spectra of several states of periodic chaos.

larger the slower the envelopes of the c.f’s approach their asymptotic
values. Thus the strength of the modulation is to a certain extent a
consequence of the increased correlation time observed in the box c.f.’s of
subharmonics. The distance between the local minima of this modulation is
just twice the frequency interval between neighboring lines corresponding
to a peak in the c.f. at 1 = p/2. The occurrence of this peak is obviously
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Fig. 7. Critical spectra. (a) @ = a{V = 0.892486417 ...; (b) a=a'> =0.962358420 .. .;
the symbols denote different line series », = 27"

due to the pairing of chaotic boxes characteristic for subharmonics. A
closer inspection of the spectra of higher-order subharmonics reveals that
this effect is also present, though less pronounced, for r=p/4, 7=
p/8 . ...

Considering subharmonics of increasingly higher order one obtains
spectra which converge in an asymptotically self-similar fashion to the
spectrum at the critical point a{?. In these critical spectra (Fig. 7) lines can
be grouped into series. The intensity of lines in each series shows scaling
behavior with the frequency.

Considering several line series of the form (S, |, =2""vy, 15, N
fixed} we obtained

S, v < (v,/N)F 26
o S (26)

with § = 6.31. (see Fig. 8). A calculation analogous to Ref. 13 relates { to
the scaling parameter a of the critical limit sets A(a‘?):

f=20d[2e? /(a — 1)] (27)

i.e., i = 6.12. The difference between the experimental and the theoretical
value is probably due to the approximative nature of the scaling assump-
tion. Despite the variation of a on the limit set A(a{?) the data points in
Fig. 8 form almost perfect straight lines in the low-frequency range. Only
when intensities become smaller than ~10~!* do deviations from linearity
occur, which we attribute to round-off errors. Hence we conclude that our
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Fig. 8. Asymptotic scaling of intensities within several line series; the different symbols refer
to the series marked in Fig. 7.

numerically computed spectra in Fig. 6 are not seriously affected by
round-off errors.

6. APPROXIMATION FOR SPECTRA OF PERIODIC CHAQS

The spectra of periodic chaos can approximately be calculated by
separating periodic and purely chaotic components. To this end we define a
normalized sequence {X,(d)}_, by

X, (@) = %,(@) + (@)%, (d), 1=0,1,2,... (28)

where x, € I{? and {X (8)}%_q, {1 (&)} _, are the sequences originating
from the periodic continuation of the finite sets of instable fixed points and
box lengths. These sequences contain the periodic components of
{x,(@)}>_y, whereas {X (d)}>_, represents the chaotic part. Its subseries
within each box have already been considered in (12). In terms of the
decomposition (28) one obtains

(xp =X + LX) (29)
<xtxt+1'> = <'i't'it+'r> + <3etlt+1-£l+'r>
SRCHNE SRR NS JU (30)

Our approximation is based on two assumptions. The first one is the
decorrelation assumption:

The chaotic component is not correlated with the periodic compo-
nents.

The second assumption relates to the statistics of {%.}7_,. By the
transformation (28) it is clear that {X,}2_, is normalized to the unit
“interval. Considering for example the case p = 3(RL), see Fig. 2a, this
means the off-diagonal boxes f= 0,1,2 are transformed to the unit square
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1
2101

T

Fig. 9. The mappings within off-diagonal boxes j'= 0, 1,2 of Fig. 3a after the normalization
transformation (28).

(Fig.9). While the map in f 2 becomes the well-known parabola f;, the
maps in ] 0,1 are transformed into maps close to the identity. For a
general period-p chaos the normalized map in j = p — 1 is f1 and the other
maps are more or less identities. The sequence {X,}7°, is generated by
cyclic apphcatlon of the normalized maps in j=0,1,2,...,p — 1. Since
those in j =0,1,2, ..., p — 2 are almost linear and the one in j=p — 1 is
fi with ¢,(1) as given in (11), it is natural to expect the temporal behavior of
{X.}%., to be similar to the behavior of {x (1)}, slowed down by a
factor p. This leads to the time dilation assumption:

The c.f. of the normalized sequence {X,}7_, of period-p chaos is given
by

0.125(1 ~ 7/p) for0<r<p

E(amy = 31
A7) 0 forp<r Y
and the mean value is
(%(@P)) =05 (32)
By means of these two assumptions we obtain from (29) and (30)
c (a(P)) = c*(&'(P)) +d (d(P))c (5<p)) (33)
where ¢ is the c.f. of X, + (X >/ and
p—1
4(EP) = 3 L@ (@7) (34)
t=

If N is an integer multiple of p, equation (33) is also valid for the respective
N-truncated quantities. The Fourier transformation of (33) yields

S,n (@P) = Sty (5<P’)+ED (@S, (@P) (39
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where S, , S¥y, and .S"',,’N are the spectra of the corresponding truncated

14

correlation functions c, v, ¢}y, and ¢, y and

N-—1
D,y (@P)= % 3 exp(—2mvr/N)d, (@) (36)
’ 7=0

The results obtained with this approximation for the spectra in Fig. 6
are shown in Fig. 10. The agreement is fairly good. The largest errors occur

lg SV,N R ) lg SV,N RLL
-sk/"‘ -SF\J‘J
-10 a -10 e
o 0% V.IN 5 3 vIN 05
Ig S, 72 PE P

.
-

-10 r ) ) ) b -10 . ) ) ) ) f
0 0.25 V’N 05 1] 025 V/N 0S
lg Syn| R®® g SyN| RLLR
‘5 (/l\l/"\l il l l
~-10 N L lc -0 N ) ) ) g
0 0.25 v /N 05 0 025 V/N [13
lg Syn| R™ lg Syn| RLLL
o . .. d op . . Ih
0 0.25 V/N Qs 0 028 V/N 0s

Fig. 10. Results obtained with (35) for the spectra of Fig. 6.
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for the spectra of subharmonics since our approximation (31) does not
account for the slower decay of box c.f.’s in this case.

When 4 approaches a critical value a!”, (35) becomes an exact
expression for the spectrum because

Jim D, (@) =0 (37)

and all the information about the dynamics is filled in via S¥y(al?).

Fujisaka and Yamada®® used Mori’s projector formalism to calculate
c.f’s of discrete chaotic processes. Hence their method requires as input
information the invariant measure u‘” (x), which is frequently known for
p =1 but rarely for p > 1, whereas we use x;, lj,j =0,1,2,...,p—1and
the cf. ¢, of the normalized map in box j=p — 1. So, by using their
method first to find ¢ and then applying the procedure described above the
correlations and spectra of periodically chaotic states of dynamic laws
different from (2) might be successfully approximated as well.
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